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Abstract—As network link rates are being pushed beyond 40 
Gbps, IP lookup in high-speed routers is moving to hardware. 
The TCAM (Ternary Content Addressable Memory)-based IP 
lookup engine and the SRAM (Static Random Access Memory)-
based IP lookup pipeline are the two most common ways to 
achieve high throughput. However, route updates in both engines 
degrade lookup performance and may lead to packet drops. 
Moreover, there is a growing interest in virtual IP routers where 
more frequent updates happen. Finding solutions that achieve 
both fast lookup and low update overhead becomes critical. In 
this paper, we propose a hybrid IP lookup architecture to address 
this challenge. The architecture is based on an efficient trie 
partitioning scheme that divides the Forwarding Information 
Base (FIB) into two prefix sets: a large disjoint leaf prefix set 
mapped into an external TCAM-based lookup engine and a small 
overlapping prefix set mapped into an on-chip SRAM-based 
lookup pipeline. Critical optimizations are developed on both IP 
lookup engines to reduce the update overhead. We show how to 
extend the proposed hybrid architecture to support virtual 
routers. Our implementation shows a throughput of 250 million 
lookups per second (MLPS). The update overhead is significantly 
lower than that of previous work and the utilization ratio of most 
external TCAMs is up to 100%. 

I. INTRODUCTION 

IP lookup is a critical function of Internet routers. Since the 
introduction of CIDR (Classless Inter-Domain Routing) in 
1993, finding the next hop for a destination IP address has 
become a longest prefix matching (LPM) problem. Indeed, 
given a destination address, multiple IP address prefixes of 
different lengths may exist, in the Forwarding Information 
Base (FIB) of the router, that match (i.e. contain) the given 
address and the longest such prefix must be used to determine 
the next hop for the corresponding packet to ensure correct 
forwarding operation. 

The longest prefix matching problem lends itself to a 
hierarchical data structure for which a trie is an efficient 
representation (see Fig. 1(a)). In the context of IP lookup, a trie 
contains two types of nodes: 1) nodes (which we call prefix 
nodes and are shown as dark nodes in Fig. 1(a)) that represent 
predefined prefixes for which valid next hop information exists; 
and 2) nodes (which we call non-prefix nodes and are drawn 
clear) that do not contain next hop information. The longest 
prefix matching a destination address is then determined by 
following a single path from the trie root, with the longest-
prefix match corresponding to the last prefix node encountered 

before the end of the path. Note that any encountered leaf node 
will contain a longest-prefix match. Moreover, the address 
space represented by the prefix stored at a node is always 
contained within the address space represented by the prefix 
stored at its ancestor nodes.  Nonetheless, as there is only one 
leaf node per trie-path, prefixes stored at different leaf nodes 
are disjoint, i.e., the corresponding address spaces of two 
leaves have no address in common. 

As network link rates are being pushed beyond 40 Gbps, IP 
lookup with LPM becomes a major bottleneck in high-speed 
routers. The high lookup performance required by such high 
link rates is hard to be achieved in software [1] and two major 
hardware implementation techniques have been used to achieve 
such high performance: TCAM (Ternary Content Addressable 
Memory)-based lookup engines and SRAM (Static Random 
Access Memory)-based lookup pipelines.  

A TCAM implements a high-speed associative memory, 
where in a single clock cycle a search key is compared 
simultaneously with all the entries (i.e., keys) stored in the 
TCAM to determine a match and output the address of it. As 
TCAM entries can be specified using three states (0, 1, and ‘X’ 
meaning don’t care), this type of memory is particularly well 
suited for storing IP prefixes where masked bits are given ‘X’ 
states. Indeed, because of the ‘X’ bits, several TCAM entries 
could match a given IP address, so TCAMs are designed to 
always return the first matching entry encountered (TCAM 
entries have an intrinsic order represented by an address). 
Therefore, in order to provide correct LPM operations, prefixes 
are stored in the TCAM with reverse order in overlap, i.e., 
longest prefix should be stored first. These order constraints 
result in a large number of TCAM entry movements on some 
route updates, with large impact on the lookup performance 
and possible packet drops[2].  

Because of the interest of the TCAM and the importance of 
the problems solved by it, several research efforts have led to 
new algorithms to solve the issue of TCAM updates. In [3], 
two approaches named PLO_OPT and CAO_OPT have been 
proposed. PLO_OPT maintains the prefix-length order by 
putting all the prefixes in order of decreasing prefix lengths and 
keeping the unused space in the center of a TCAM. CAO_OPT 
relaxes the constraint to only overlapping prefixes in the same 
chain (a single path from the trie root). Both of the algorithms 
can decrease the number of entry movements per update. 
However, multiple entry movements are still needed for one 
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route update in the worst case[3]. In another approach, order 
constraints can be completely avoided in a TCAM, by 
converting the whole prefix set into an equivalent minimum 
independent prefix set (MIPS) [4] using the leaf pushing 
technique [5]. However, leaf pushing may lead to prefix 
duplication. When a prefix is updated, all of its duplicates 
should also be modified. Therefore, multiple write accesses 
may still be needed during a single route update. Additionally, 
TCAM updates can be performed without packet drops by 
duplicating the TCAM, with updates done to the shadow 
TCAM and the active one swapped out. However, the TCAM 
memory requirements are double. 

The other major hardware implementation technique is the 
SRAM-based lookup pipeline[6], which corresponds to a 
straightforward mapping of each trie level onto a corresponding 
pipeline stage with its own SRAM memory, in order to achieve 
a throughput of one lookup per clock cycle through the pipeline. 
In such solutions, the number of pipeline stages depends on the 
stride used (i.e., the number of bits used to determine which 
branch to take at each stage -- in Fig. 1 and in the rest of this 
paper we use 1-bit strides). Therefore, the lookup pipeline will 
require a rather high number of separate SRAMs (up to 32 in 
the case of IPv4). The Field Programmable Gate Array (FPGA) 
is a natural hardware choice for implementation of the SRAM-
based pipeline, as it contains hundreds of separate SRAMs. 
Nevertheless, the on-chip SRAM is generally a scarce resource 
which should be allocated and utilized efficiently, or otherwise 
be complemented by external SRAMs[7]. One major issue here 
is that assigning the right size of the SRAM to each stage of the 
pipeline and utilizing each SRAM efficiently is complicated by 
the fact that it intimately depends on the shape of the trie. 
While much work has been devoted to this issue[8-10], the fact 
remains that on-chip SRAM is still unable to accommodate the 
typically large inter-domain FIB (as shown in TABLE I, about 
360K prefixes to date). For example, in [10] it is reported that 
OLP(Optimized Linear Pipeline) can support 30K IPv4 
prefixes using 3.456 Mb of on-chip SRAMs. Hence, given a 
state-of-the-art large Virtex-6 FPGA (e.g., XC6VHX565T) 
with 32 Mb of on-chip SRAMs, only about 277K IPv4 prefixes 
can be stored using OLP.  This means that the memory size is 
still a challenge in the SRAM-based lookup pipeline. 

Route updates are handled in the SRAM-based lookup 
pipeline by using a technique known as write bubbles[11], 
which essentially encode and encapsulate the updates into write 
bubbles to be performed at each stage of the pipeline. 
Nevertheless, only a single port of the SRAM modules is used 

for read and write in building lookup pipelines in the past[11-
12]. This means that write bubbles may lead to disruption to the 
IP lookup process. Much work[11-12] has targeted the 
reduction of the number of write bubbles resulted from route 
updates. Fortunately, state-of-the-art FPGAs now integrate dual 
port SRAMs, capable of concurrent reading and writing (with 
the possibility to do a write immediately after a read has been 
completed without any collision). This can be exploited to 
solve the problem of disruption caused by updates. 

In a virtual router context, several router instances, and thus 
multiple FIBs, must be accommodated. This clearly 
exacerbates the memory requirement issues of hardware lookup 
solutions[13]. Recent researches [14-15] have concentrated on 
techniques to merge different virtual routers FIBs into a single, 
“compressed” trie structure, with a view to reduce the total 
memory requirement of the lookup engine. Nevertheless, route 
updates in the current Internet are known to occur frequently, 
with peak update rates affecting thousands of prefixes per 
second [16]. In the presence of virtual routers, a same network 
event could trigger simultaneous updates to multiple FIBs, thus 
increasing the rate of updates to the hardware lookup engine. 
Unfortunately, merging several FIBs together usually results in 
complex data structures whose update mechanisms become 
very challenging. 

In this paper, we propose a different view to the problem of 
hardware IP lookup engine design. Rather than using only one 
type of hardware solution: TCAM or SRAM-based, we mix 
these two in order to benefit from the positive points of each 
architecture without being hindered by their weaknesses. Our 
aim is to design a very fast lookup architecture that enables fast 
updates concomitantly. The core idea of our solution is to 
exploit an empirically observed structure in 1-bit tries built 
from real FIBs (see TABLE I for more details). This observed 
structure is as follows: 

1) About 90% of all prefixes are stored in trie leaves[17], 
and are thus disjoint from each other. 

2) When the leaf nodes are removed from the original trie, 
non-prefix internal nodes that only lead to those leaf nodes can 
also be removed, and we are left with a much smaller trimmed 
trie, which contains, on average, only about 12% of the nodes 
of the original trie. 

The large disjoint prefix set, resulting from property 1 
above, makes a TCAM the ideal component to look these up, 
as naturally disjoint prefixes do not impose any order 
constraints within the TCAM, making updates trivial (no entry 
movements are required and a single write access is sufficient 
for each update since no prefix duplication is introduced). The 
small trimmed trie resulting from the removal of the leaf 
prefixes from the original trie, which represents the set of 
prefixes that overlap with the above mentioned disjoint prefix 
set, need much less memory space and can be stored in an on-
chip SRAM-based lookup pipeline in FPGA. We will refer to 
this small trimmed trie as “the overlapping trie”. In fact, 
several such trimmed tries can easily be accommodated in 
SRAMs of an existing FPGA. Updating this SRAM-based 
pipeline is also trivial, by exploiting the dual port capabilities 
of SRAMs mentioned earlier. 

 
 

Figure 1. (a) A sample trie, (b) the corresponding disjoint prefix set, and 
(c) the corresponding overlapping prefix set (a small trie). 
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In this paper, we mainly target fast FIB updates in high-
speed routers. For this purpose, we propose a hybrid lookup 
architecture, composed of a TCAM-based lookup engine and 
an SRAM-based pipeline operating in parallel. The TCAM 
contains the disjoint prefixes and the SRAM-based pipeline 
contains the overlapping tries. We show that this hybrid 
approach results in fast lookup combined with easy and fast 
updates. We also show how our approach can be applied in the 
context of virtual routers, by simply prefixing IP addresses with 
a virtual router ID (VID), and performing the lookup on those 
“extended addresses”. 

We implement the proposed hybrid architecture on our 
PEARL hardware platform[18], and achieve a maximum 
throughput of 250 Million Lookups Per Second (MLPS). 
Comparative results show that the update overhead is 
significantly lower than that of previous work. Moreover, our 
TCAM memory can easily be dimensioned to achieve memory 
space utilization close to 100%. 

The rest of the paper is organized as follows. In section II, 
we introduce our hybrid architecture and describe the 
optimizations for fast updates. In section III, we extend our 
approaches to support virtual routers. In section IV, we 
describe the architecture implementation on our PEARL 
platform and compare its performance with other techniques. 
We discuss some extensions in section V and conclude the 
paper in section VI. 

II. ARCHITECTURE 

In this section, we will describe our hybrid IP lookup 
architecture with fast updates in the context of a single router. 
We use 1-bit tries to illustrate the concepts. First, a 1-bit trie 
will be built from the FIB of the router, and a trie partitioning 
scheme will be applied to partition the trie into a large disjoint 
leaf prefix set and a small trimmed overlapping trie (we will 
use the terms an overlapping trie and an overlapping prefix set 
interchangeably through the paper). The large disjoint leaf 
prefix set is mapped into an external TCAM-based IP lookup 
engine, while the small trimmed overlapping trie is mapped 
into an on-chip SRAM-based IP lookup pipeline in FPGA.  

A. Trie Partitioning Scheme 

Based on the observation described in the Introduction, an 
efficient trie partitioning scheme similar to the set-bounded 
leaf-pushing algorithm in [17] is applied to partition the 1-bit 
trie into two prefix sets. All the leaf prefixes in the trie are 
collected to form a large disjoint prefix set, and all the leaf 
nodes are removed from the trie. Then, we can further trim the 
remaining trie by removing non-prefix leaf nodes recursively 
until all the leaf nodes in the final trimmed trie are prefix nodes. 
Note that leaf pushing is not used in the trimmed trie in order to 
enable fast updates, which is the key difference between our 
trie partitioning scheme and that applied in [17].  

Fig. 1 illustrates the trie partitioning scheme. A 1-bit trie 
built from a sample FIB is shown in Fig. 1(a).  In the trie, 
prefix P2, P4, P5, and P6 are leaf prefixes. All these leaf 
prefixes are moved to a disjoint prefix set (see Fig. 1(b)), and 
the leaf nodes 4, 7, 8, and 9 are deleted from the trie. Then the 
remaining trie can be further trimmed. For example, node 5 
becomes a leaf node but it doesn’t contain any prefix so it can 
be removed. The final trimmed trie is shown in Fig. 1(c) and 
represents the small overlapping prefix set (a small overlapping 
trie).  

B. Overall Architecture 

The hybrid IP lookup architecture is depicted in Fig. 2. It’s 
composed of two IP lookup engines operating in parallel. The 
large disjoint leaf prefix set (e.g., see Fig. 1(b)) is stored in the 
TCAM-based lookup engine, while the small overlapping trie 
(e.g., see Fig. 1(c)) is mapped into the on-chip SRAM-based 
pipeline. The destination IP address of an incoming packet is 
extracted in the header parser module and sent to the two 
lookup engines to search in parallel. Meanwhile, the packet is 
stored in a buffer waiting for the next hop information.  Since 
the length of the prefix matched in the disjoint prefix set is by 
design longer than that in the overlapping prefix set, the search 
result of the TCAM-based lookup engine has a higher priority 
than that of the SRAM-based lookup pipeline. Note, however, 
that a match does not necessarily exist in either lookup engine. 
After lookups in both lookup engines are completed, the 
priority arbiter module resolves the priority and determines the 
final next hop information. Thereafter the packet is read from 
the buffer and modifications are conducted based on the next 
hop information. Finally, the packet becomes ready to be 
scheduled to the corresponding output interface. 

C. Optimizations for Fast Updates 

Efforts are made in both lookup engines to optimize the 
update process.To achieve fast updates, only the large disjoint 

TABLE I. ANALYSIS OF REAL ROUTING TABLES 
FIB # prefixes # nodes of 

the trie 
# leaf prefixes # nodes of the 

trimmed trie 
rrc00 368057 905941 332409 (90.31%) 110109 (12.15%)
rrc01 358925 880946 325667 (90.73%) 103326 (11.73%)
rrc03 355603 873608 322419 (90.67%) 102984 (11.80%)
rrc04 366656 903163 332962 (90.81%) 104169 (11.53%)
rrc05 358355 879902 324594 (90.58%) 104457 (11.87%)
rrc06 351919 863114 319654 (90.83%) 100819 (11.68%)
rrc07 361881 888468 327781 (90.58%) 106517 (11.99%)
rrc10 355106 871466 321995 (90.68%) 102833 (11.80%)
rrc11 361708 888394 327742 (90.61%) 105552 (11.88%)
rrc12 363761 895781 329377 (90.55%) 106584 (11.90%)
rrc13 363057 894876 328942 (90.60%) 106024 (11.85%)
rrc14 361232 885979 327160 (90.57%) 105475 (11.90%)
rrc15 359326 880902 325154 (90.49%) 104536 (11.87%)
rrc16 366711 903062 331674 (90.45%) 108509 (12.02%)

Figure 2. The hybrid IP lookup architecture 
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prefix set is stored in the TCAM-based IP lookup engine. In 
such a disjoint prefix set, a given IP address can only be 
matched by at most one prefix. This means that the prefixes can 
be stored in the TCAM without any order constraints. 
Therefore, the prefixes can be directly inserted in and deleted 
from the TCAM, and route updates do not need any entry 
movement. Moreover, the leaf prefix set is naturally disjoint 
and no prefix is duplicated. Hence, a single write access is 
enough for any route update in the worst case.  

As explained in the Introduction, in the first generation of 
SRAM-based pipelines[11-12], write bubbles may lead to 
disruption to the IP lookup process since a write operation and 
a read operation could not be performed simultaneously on the 
same port of an SRAM. In this paper, we use new generation of 
FPGAs, like Xilinx FPGAs, that have dual port on-chip 
SRAMs[19]. These SRAMs can be configured into a simple 
dual port (SDP) mode where the SRAM has separate read and 
write ports. In this mode read and write can be performed 
simultaneously without any collision. Using this mode we 
design a pipeline with separate lookup and update paths in 
order to totally eliminate the disruption (see Fig. 3(a)). In this 
pipeline lookups are performed by only accessing the read port 
of the SRAM in each stage, while write bubbles are performed 
by only accessing the write port. In this way, IP lookups and 
write bubbles can be performed simultaneously in separate 
paths without collision.  

Before a write bubble is injected into the pipeline, the data 
to be written to each stage of the pipeline are previously stored 
into a write bubble FIFO relative to each stage (see Fig. 3(b)).  
When the write bubble enters into the pipeline, it visits each 
stage for one clock cycle, and goes to the next stage. When a 
write bubble visits a stage, the data stored in the associated 
write bubble FIFO are written into the corresponding address 
when the valid flag is true. Through this scheme, the write 
bubble doesn’t need to wait for the data and it can update each 
stage in just one clock cycle (that means it can go through the 
pipeline at the same speed as the lookup). 

As a write bubble and an IP lookup can run at the same 
speed, and one write bubble is sufficient for a worst-case route 
update when using the 1-bit trie-based data structure for 
pipelining[12], an IP lookup never traverses the trie in an 

inconsistent state. More precisely, even when a lookup and a 
write bubble access the same node of the same stage 
simultaneously, the lookup still reads the old node before 
modification (thanks to the READ_FIRST feature of the SDP 
SRAM in Xilinx FPGA[19]), and this read-write order is kept 
when they both move to the next stage. Therefore, an IP lookup 
always accesses the trie in a consistent state during updating. 

In summary, in our proposed architecture a single write 
access is sufficient for a worst-case route update in the TCAM-
based lookup engine, and route updates have zero impact on 
the lookup process in the SRAM-based lookup pipeline. 

D. Fast Incremental Updating Algorithms 

We need to describe how an incremental route update is 
translated into updates in the TCAM-based lookup engine and 
the SRAM-based lookup pipeline. A route update can be 
classified into three main categories [17]: (1) insertion of a new 
prefix, (2) deletion of an existing prefix, and (3) modification 
of an existing prefix.  The third type of the route update can 
easily be performed since it doesn’t change the shape of the trie. 
However, the first two types are more complex. Insertion of a 
new prefix or deletion of an existing prefix may lead to prefix 
changes in both the disjoint prefix set and the overlapping trie.   

To deal with this, we maintain an auxiliary 1-bit trie built 
from the FIB in the control plane of the router. The auxiliary 1-
bit trie keeps track of prefixes stored in our hybrid architecture. 
An update operation consists of two phases. In the first phase, 
the route update is performed on the auxiliary trie and changes 
in the disjoint prefix set and the overlapping trie are found. In 
the second phase, optimized write accesses are applied to the 
hybrid architecture. In order to illustrate the incremental update 
process in our hybrid architecture, two complex update 
scenarios are shown in Fig. 4 and Fig. 5, respectively.   

Fig. 4 illustrates the insertion of a new leaf prefix P7 (000*). 
After the insertion, prefix P2 turns into a non-leaf prefix and a 
new leaf prefix P7 appears. This results in three changes in the 
corresponding disjoint prefix set and the overlapping trie: (1) 
prefix P2 should be inserted into the overlapping trie, (2) prefix 
P2 should be deleted from the disjoint prefix set, and (3) prefix 
P7 should be inserted into the disjoint prefix set. After these 
changes are found in the control plane, P2 will be inserted into 
the SRAM-based pipeline, and then P7 will be inserted into the 
TCAM at the location where P2 was previously stored. The 
TCAM location where the leaf prefix is stored is recorded in 
the node data structure of the auxiliary 1-bit trie.  

Fig. 5 illustrates the deletion of an existing leaf prefix P2 
(00*). After the deletion, prefix P1 turns into a new leaf prefix. 

Figure 4. (a) Insertion of a new prefix, (b) its corresponding disjoint 
prefix set, and (c) its corresponding overlapping trie 

(a) The n-stage IP lookup pipeline 
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Figure 3. The SRAM-based IP lookup pipeline 
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It leads to three changes in the corresponding disjoint prefix set 
and the overlapping trie: (1) prefix P2 should be deleted from 
the disjoint prefix set, (2) prefix P1 should be inserted into the 
disjoint prefix set, and (3) prefix P1 should be deleted from the 
overlapping trie. After detecting these changes in the control 
plane, P1 will be inserted into the TCAM at the location where 
P2 was previously stored, and thereafter P1 will be deleted 
from the SRAM-based pipeline. 

Due to space limitation in this paper, we only illustrate two 
complex update scenarios but all scenarios are as easy to 
update. The complete insertion and deletion algorithms are 
presented in Fig. 6 and Fig. 7, respectively. Both of these 
algorithms are performed in software with a time complexity 
O(l), where l is the length of prefix P to be updated. In both 
algorithms, one route update generates at most one write 
operation to each lookup engine, and the order between the two 
write operations (if they exist) should be kept to avoid incorrect 
longest prefix matching during updating. For example, deleting 
prefix Q and inserting prefix P in the TCAM (see line 10 in Fig. 
6) can be combined into one write operation by just overwriting 
prefix Q with P. Additionally, the execution of line 9 and 10 
should be kept in the order shown in Fig. 6. Otherwise, prefix 
Q will disappear in both lookup engines temporarily, which 
may lead to incorrect longest prefix matching during updating. 

III. LOOKUP FOR VIRTUAL ROUTERS 

We described in previous section the hybrid IP lookup 
architecture for a single router. Nonetheless, the lookup 
architecture can naturally be extended to support virtual routers.  

A virtual router platform contains multiple FIBs; each FIB 
has the same feature as the FIB of a traditional non-virtual 
router. Therefore, the trie partitioning scheme is still suitable 
for each individual FIB in the virtual router platform. When 
each FIB is partitioned separately, multiple large disjoint prefix 
sets and relatively small overlapping tries are generated.  We 
can further merge these disjoint prefix sets into a single one, 
and merge the overlapping tries into a single trie. 

Several approaches have been proposed for merging prefix 
sets for virtual routers, e.g., common prefix set[14] and virtual 
prefix technique [17]. For our purpose we have chosen the 
virtual prefix technique since it is simple and has a fast 
execution time[17]. In this scheme, by appending a unique 
virtual router ID (VID) before the prefix we get a virtual prefix. 
This ensures that the virtual prefix sets of all virtual routers are 
not overlapping. Hence, we can directly merge the virtual 
prefix sets of all virtual routers together to form a large prefix 
set. As an example, let’s assign a VID 0 to the FIB shown in 
Fig. 1(a) and a VID 1 to the FIB shown in Fig. 8(a). Their 
corresponding prefix sets can be merged into two new prefix 
sets (see Fig. 9(a) and Fig. 9(b)).  

Using the VID, all FIBs of virtual routers can be merged 
into a large disjoint prefix set and a relatively small 
overlapping trie (e.g., see Fig. 9(a) and 9(b)). These two sets 
have the same feature as that in a single router. Therefore, the 
merged disjoint prefix set can be mapped into the external 
TCAM-based IP lookup engine, and the merged overlapping 
trie can be mapped into the on-chip SRAM-based IP lookup 

 
Figure 5. (a) Deletion of an existing prefix, (b) its corresponding disjoint 

prefix set, and (c) its corresponding overlapping trie 

Input:  Trie T, and Prefix P which is to be inserted to T. 
Output: Changes in the disjoint prefix set S1 and the 
overlapping prefix set S2. 
1 Insert prefix P into trie T, the new trie is T’ 
2 Find the longest prefix of P in T’ : Prefix Q 
3 if P is a non-leaf prefix in T’ 
4    Add P into S2; 
5 else if P is a leaf prefix in T’ 
6    if Q is a non-leaf prefix in T 
7        Add P into S1; 
8    else if Q is a leaf prefix in T 
9        Add Q into S2; 
10        Del Q from S1, and add P into S1; 
11    end if     
12 end if 

Figure 6. Algorithm: Insertion of a prefix 

Input: Trie T, and Prefix P which is to be deleted from T. 
Output: Changes in the disjoint prefix set S1 and the 
overlapping prefix set S2. 
1 Delete prefix P from trie T, the new trimmed trie is T’ 
2 Find the longest prefix of P in T: Prefix Q 
3 if P is a non-leaf prefix in T 
4    Del P from S2; 
5 else if P is a leaf prefix in T 
6    if Q is a non-leaf prefix in T’  
7        Del P from S1;                      
8    else if Q is a leaf prefix in T’ 
9        Del P from S1, and add Q into S1; 
10        Del Q from S2; 
11    end if     
12 end if 

Figure 7. Algorithm: Deletion of a prefix 

 
 

Figure 8. (a) Another sample trie, (b) the corresponding disjoint prefix 
set, and (c) the corresponding overlapping prefix set. 
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pipeline. This makes the architecture depicted in Fig. 2 suitable 
for virtual routers with a slight modification. The IP address 
used to search both lookup engines should be changed to a 
virtual IP address (VIP) by appending a VID to an IP address. 
This is performed in the header parser module shown in Fig. 2.  

From this point, the update process in virtual routers 
becomes similar to that in a single router. When a route update 
is to be performed on one FIB of virtual routers, the same fast 
incremental updating algorithm described before is applied on 
the corresponding 1-bit trie to detect the changes in its disjoint 
prefix set and overlapping trie, with the difference that now the 
new prefix to be updated must be constructed by concatenating 
the prefix with the VID. Taking the insertion in Fig. 4 as an 
example, and assuming that they are relative to a virtual router 
instance with a VID 0, the changes in the final merged sets are 
as follows: (1) virtual prefix P02 (000*) should be inserted into 
the overlapping trie, (2) virtual prefix P02 (000*) should be 
deleted from the disjoint prefix set, and (3) virtual prefix P07 
(0000*) should be inserted into the disjoint prefix set. 

As mentioned before, one route update causes at most one 
write operation on each lookup engine for a single router. This 
remains valid for virtual routers; any route update in an FIB of 
virtual routers need at most one write operation on each lookup 
engine.  

IV. PERFORMANCE EVALUATION 

A. Analysis of Real Routing Tables 

Fourteen real IPv4 routing tables have been collected from 
RIPE RIS Project[20] on 05/20/2011. Analysis is performed on 
these real routing tables to validate the advantage of the trie 
partitioning scheme. The analysis results are shown in TABLE 
I. 

The number of prefixes and leaf prefixes in each FIB are 
shown respectively in column # prefixes and # leaf prefixes. 
We can see that for all the fourteen FIBs, more than 90% of the 
prefixes are leaf prefixes. This is expected since most of the 
prefixes are around 24-bit long, and most of them are disjoint 
leaf prefixes. The number of nodes in the original trie is 
represented in column # nodes of the trie. We applied the 
partitioning scheme. After moving the leaf prefixes into a 
disjoint leaf prefix set and trimming the trie further, the number 
of nodes remaining in the final trimmed trie is shown in 
column # nodes of the trimmed trie. The results show that after 
trimming, the number of remaining nodes is about 12% of that 

of the original trie.  These observations confirm the initial 
empirical finding which is the base of the trie partitioning.  

 Based on the above analysis, the following conclusions can 
be drawn. 

1) Using the partitioning scheme, most of the prefixes are 
moved to external TCAMs. Meanwhile, all of them are 
naturally disjoint and they can be stored without any order 
constraints. This feature can be used to guarantee fast updates 
in a TCAM.  

2) After removing the leaf nodes, the amount of memory 
needed in the SRAM-based pipeline is reduced significantly.  
Hence, the memory size issue of on-chip SRAM-based 
pipelines in FPGA can be well addressed. 

The above conclusions still hold for virtual routers as each 
router will have an FIB that will validate the above properties. 

B. Throughput 

We have implemented the hybrid architecture on our 
PEARL [18] hardware platform, which is equipped with a 
Xilinx Virtex-5 XC5VLX110T-1 FPGA and an IDT 
IDT75K72100 TCAM. The post place and route result in the 
FPGA shows a maximum clock frequency of 297 MHz (i.e., 
297 MLPS in the SRAM-based lookup pipeline). Besides, the 
TCAM has a theoretical maximum throughput of 250 MLPS. 
Hence, the implementation enables a maximum throughput of 
250 MLPS, which exceeds largely the throughput requirement 
of 100G Ethernet. However, the PEARL platform we used has 
only four Gigabit Ethernet interfaces that need a maximum 
lookup rate of about 5.95 MLPS. We show in Fig. 10, the 
measured and theoretical throughput obtained over the PEARL 
platform with the proposed hybrid IP lookup architecture.  

It is noteworthy, that it’s hard to make a fair comparison 
with throughput measured in previous work, since the device 
types and optimization parameters of implementation tools are 
very different. However, the throughput of our implementation 
is clearly adequate for practical virtual routers.  

C. Update Overhead 

The number of TCAM write accesses per update is used as 
the metric to estimate the update overhead of TCAM-based 
engines. For the SRAM-based pipeline we use the number of 
disrupted lookup cycles per write bubble as the metric of 
comparison. We have chosen PLO_OPT/CAO_OPT[3], 
MIPS[4] and write bubbles in [11-12] as the comparison basis. 

 
 

Figure 9. (a) The merged disjoint prefix set, and (b) the merged 
overlapping prefix set.  

Figure 10.  The throughput of the hybrid architecture 
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Theoretical comparison. In the best case, only one TCAM 
write access is required for each route update in both 
PLO_OPT and CAO_OPT[3], and zero TCAM write access is 
required for each update in both MIPS[4] and our architecture. 
However, the results in the worst case are quite different. In 
PLO_OPT[3], the prefix-length order should be kept and the 
empty space is arranged in the center of a TCAM. Therefore, a 
route update requires at most W/2 write accesses to the TCAM, 
where W is the maximum length of the prefixes (32 for IPv4). 
In CAO_OPT[3], the chain-ancestor order should be kept and 
the empty space is still arranged in the center. Therefore, a 
route update requires at most D/2 write accesses to the TCAM, 
where D is the maximum length of the chain. Theoretically, D 
may be up to W. MIPS[4] utilizes leaf pushing to convert the 
prefix set into an independent (disjoint) prefix set. However, 
leaf pushing may duplicate a prefix many times. In the 
theoretical worst case, a prefix could be duplicated to 2W-1 
prefixes. Therefore, the maximum number of TCAM accesses 
for one route update is 2W-1. In our hybrid architecture, the 
prefix set stored in the TCAM is naturally disjoint and prefix 
duplication is not required. One route update leads to at most 
one write access to the TCAM in any case.  The theoretical 
comparison between different schemes is summarized in 
TABLE II.  

Empirical comparison. We get from the RIPE RIS project 
[20] one of the publicly available routing tables rrc00 (see 
TABLE I)  and one-hour update traces on it. The update traces 
contain 165,721 updates. Fig. 11 shows the running average of 
the number of TCAM accesses per update required for all the 
four compared TCAM update schemes as a function of the 
number of updates. The average in our proposed hybrid 
architecture remains persistently under one TCAM access 
(about 0.91) per update. This is expected since only one TCAM 
access is required for a leaf prefix update and zero TCAM 
access for a non-leaf prefix update. It can be seen that the 
average number of TCAM accesses in the hybrid scheme is 
much lower than that of all other three competing solutions. 
More importantly, the maximum number of TCAM accesses 
per update that directly affects the size of the packet buffer 
required in a lookup engine to avoid packet drops during 
updating, is precisely equal to one and significantly lower than 
that of competitor schemes (see TABLE III). 

Obviously, the number of TCAM accesses per update in 
our proposed architecture can be proved to be optimal as at 

most a single write access per update to the TCAM is 
mandatory. This means that we can guarantee a minimum 
worst-case update overhead in the TCAM-based lookup engine. 
The summary of comparison results on routing table rrc00 is 
shown in TABLE III. Last but not least, even if MIPS is able to 
achieve a performance relative to an average number of write 
accesses per update that is close to 1, the worst-case overhead 
for a single update is very high (see TABLE II and TABLE III).  

In [11-12], write bubbles are used for route updates in 
SRAM-based pipelines. Each write bubble may disrupt the IP 
lookup process for one cycle in the worst case and minimizing 
the number of write bubbles reduces the update overhead. In 
our approach, we have addressed this challenge by devising a 
pipeline with separate lookup and update paths in order to 
totally eliminate the disruption to IP lookup process caused by 
write bubbles.  

In summary, each route update leads to at most one write 
access in the TCAM-based IP lookup engine and has zero 
impact on the SRAM-based pipeline. Therefore, The update 
overhead is significantly lower than that of previous work[3-4, 
11-12]. 

D. Memory Utilization 

As explained before if the entire routing table was going to 
be managed by an SRAM-based pipeline, external memories 
would have been mandatory to support large routing tables in 
practice. However, due to the limited number of available I/O 
pins in FPGA, only a few external memories can be equipped. 
Hence, the utilization ratio of external memories becomes very 
important.  

When external SRAMs are used for trie-based pipelines, a 
few large levels are moved into external SRAMs[7]. However, 
the size of those levels is variable and controlling the memory 
distribution among these stages is hard to achieve[7]. Therefore, 
the external SRAMs should be over-provisioned and memory 
waste can rarely be avoided. In the 2-3 tree-based routers[17], 
the last few stages of the SRAM-based pipeline are moved to 
external SRAMs. In these routers, a balanced tree named 2-3 
tree is built so that the size of needed memory in level i+1 is 
about twice of that in level i. However, it is impractical to find 

TABLE II. THEORETICAL COMPARISON  OF THE NUMBER OF TCAM 

WRITE ACCESSES PER UPDATE 
TCAM-based Engines Maximum Minimum 

PLO_OPT  W/2 (16) 1 
CAO_OPT D/2 (16) 1 

MIPS 2W-1 (231) 0 
Our Architecture 1 0 

TABLE III. EMPIRICAL COMPARISION OF THE NUMBER OF TCAM WRITE 

ACCESSES PER UPDATE ON RCC00 ROUTING TABLE 
TCAM-based Engines Maximum Average Minimum

PLO_OPT  16 6.42 1 
CAO_OPT 4 1.55 1 

MIPS 247 1.15 0 
Our Architecture 1 0.91 0 
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Figure 11.  The running average of the number of TCAM accesses per update 
on rrc00 routing table. 
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in the market external SRAMs with exact needed sizes. Due to 
this fact, it is hard to avoid memory waste when using 2-3 tree-
based routers and the memory utilization ratio is usually low.  

In our proposed architecture, the disjoint prefix set can be 
stored in external TCAMs without any order constraints. As a 
result, a disjoint prefix set can be mapped into a TCAM until it 
becomes full. Multiple external TCAMs can be cascaded to 
store more prefixes and each of those TCAMs can achieve a 
memory utilization ratio of 100% except the last TCAM. We 
should reserve enough empty space in the last one for further 
updating. Therefore, memory waste can be avoided. 
Additionally, the memory utilization among on-chip SRAMs in 
FPGA can be well balanced using the scheme proposed in [10]. 

V. DISCUSSIONS 

A. Dual Pipelines 

The SRAMs in Xilinx FPGA[19] are dual port. A read or 
write operation can be performed on each port alternatively. In 
this paper, one port of the SRAM is dedicated to read 
operations (lookups) and the other port is dedicated to write 
operations (updates). In such a pipeline with separate lookup 
and update paths, IP lookups and route updates can run 
simultaneously without any collision. Therefore, route updates 
have zero impact on lookups. However, by using each port of 
the SRAM both for lookups and updates, an alternative 
architecture of true dual pipelines can be built[17]. In such dual 
pipelines even though a route update may disrupt the lookup 
process in the same pipeline, it has no impact on the lookup 
process in the other pipeline. Therefore, the final forwarding 
performance of dual pipelines is much higher than that of a 
pipeline with separate lookup and update paths.  However, we 
still choose the pipeline with separate lookup and update paths 
in our hybrid architecture for the following two reasons. 

First, the forwarding performance of the pipeline with 
separate lookup and update paths is sufficient in our hybrid 
architecture. Generally, the clock frequency of an SRAM is 
higher than that of a TCAM. Given a typical SRAM with a 
clock frequency of 400 MHz and a typical TCAM with a clock 
frequency of 200 MHz, an SRAM-based pipeline can achieve a 
maximum throughput of 400 MLPS and a TCAM-based engine 
can achieve up to 200 MLPS. Obviously, in a hybrid 
architecture composed of a TCAM-based lookup engine and an 
SRAM-based pipeline operating in parallel, the final lookup 
performance is determined by the TCAM-based engine and it’s 
not necessary to use dual SRAM-based pipelines. 

Second, the implementation of dual pipelines is more 
complicated than that of the pipeline with two separate paths. 
In dual pipelines, each pipeline should be switched for lookups 
or updates. However, in the pipeline with two separate paths, 
the lookups and the updates run separately. Obviously, the 
structure of the two-path pipeline is simpler. 

B. Memory Footprint 

Although external TCAMs can be fully utilized and only 
90% of the prefixes of the FIBs are stored in TCAMs, 
achieving a smaller memory footprint in a TCAM is desirable. 
For example, an existing large TCAM can accommodate up to 

1024K 40-bit entries[21]. However, there are about 300K leaf 
prefixes in a single FIB (see TABLE I), which means that only 
leaf prefixes of about three virtual router FIBs can be 
accommodated in this TCAM. Therefore, the leaf prefixes 
stored in the TCAM should be compacted to support more 
FIBs in the context of virtual routers. 

The compactions can be performed in two ways. First, leaf 
prefixes within a single FIB can be compacted. For example, if 
two leaf prefixes have the same parent node in a trie, and they 
have the same next hop, they can be replaced by their parent 
prefix. Second, leaf prefixes of different FIBs can be 
compacted. For example, if a prefix 110* with a VID 0 and a 
prefix 110* with a VID 1 coexist in the TCAM, and they have 
the same next hop, they can be merged to a single entry *110*. 
Indeed this issue exists for all TCAM management techniques. 

On the other hand, memory balancing[8-10] and compact 
data structure like trie merging[14-15] can also be applied to 
the memory of on-chip SRAMs in FPGA to achieve a small 
memory footprint.  

However, it’s noteworthy that there is a trade-off between 
memory footprint and update overhead, since in the extreme, a 
very compact data structure may drastically increases the 
update overhead. This trade-off should be considered during 
compacting in practice. 

As mentioned before, external SRAMs can also be used to 
extend the total memory size of on-chip SRAM-based pipelines. 
Each external SRAM should be over-provisioned and memory 
waste couldn’t be avoided. However, an SRAM usually has a 
higher density than a TCAM. We are planning to study how to 
use external memories in an efficient way to support more FIBs 
after compaction in the near future. 

C. Multi-bit Trie 

In this paper, we have used a 1-bit trie structure. However, 
a multi-bit trie can be used to represent the final small 
overlapping trie before mapping it into the on-chip SRAM-
based pipeline.  

However, this brings new problems. When building a 
multi-bit trie, prefix expansion is needed in order to transform a 
prefix set into an equivalent one with allowed prefix lengths. 
However, prefix expansion may lead to node duplication [22].  
Therefore, a single route update may need more than one write 
access on a single pipeline stage and multiple write bubbles 
may be required for a complete route update. In order to avoid 
incorrect longest prefix matching, no IP lookups are allowed to 
be injected into the pipeline until all the write bubbles 
belonging to a single route update are completed. Hence, route 
updates may lead to disruption to the IP lookup process and 
zero impact on the lookup process can no longer be guaranteed. 
This explains why we don’t use the multi-bit trie to represent 
the overlapping prefix set.  

VI. CONCLUSIONS 

In this paper, we mainly focus on the FIB update challenge 
for high-speed routers. An efficient trie partitioning scheme is 
applied to convert a 1-bit trie into a large disjoint leaf prefix set 
and a small overlapping trie. This partitioning is motivated by 
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the observation that more than 90% of prefixes in the 1-bit trie 
are naturally disjoint leaf prefixes and can be easily mapped 
into external TCAM-based lookup engine. Thus, entry 
movements can be totally avoided and no prefix is duplicated, 
which results in a single write access for each update of a leaf 
prefix. Additionally, the memory management of TCAMs can 
be significantly simplified since a prefix in a disjoint prefix set 
can be stored in a TCAM at any available location. Therefore, 
we do not need to reserve empty space in each TCAM at 
special locations, and thus achieve a utilization ratio of TCAMs 
close to 100%. In other words, we only need to reserve some 
empty space in the last TCAM for further updating, and the 
remaining TCAMs can be fully utilized.  

After removing the leaf nodes, the remaining trie can be 
further trimmed resulting in an overlapping trie that contains 
only about 12% of the nodes of the original trie. The 
overlapping trie is thereafter implemented in an SRAM-based 
pipeline with significantly lower memory requirement. In the 
context of virtual routers, multiple such overlapping tries can 
be accommodated in the on-chip SRAMs of existing FPGAs. 
Moreover, by exploiting the dual port SRAMs in Xilinx FPGA, 
we design an SRAM-based pipeline with separate lookup and 
update paths that enable simultaneous lookup and update 
operations without any collision. Therefore, route updates have 
zero impact on our dual-path SRAM-based pipeline.    

The fast incremental updating algorithms guarantee that, in 
any case, any route update in the original 1-bit trie leads to at 
most one write access in our TCAM-based lookup engine, and 
at most one write bubble in our SRAM-based lookup pipeline 
(we can ignore the update overhead in our SRAM-based 
lookup pipeline since updates have zero impact on lookups). 
Therefore, we only need to lock the TCAMs for the time of at 
most one write access during each update. This update 
overhead is significantly lower than that of previous work.  

In the context of virtual routers, a virtual router ID is 
assigned to each FIB and a simple merging scheme is applied. 
Then, the hybrid architecture can be well scaled to support 
virtual routers. Meanwhile, the update overhead of each route 
update stays the same as that in a single router. 

The performance evaluation shows that the throughput is 
sufficient for 100G Ethernet routers, the update overhead is 
significantly lower than that of previous work, and the 
utilization ratio of most external high-capacity memories can 
be up to 100%. While the memory consumption of our 
proposed scheme is reasonable, we will study, as future work, 
compact data structures that can be applied to improve memory 
efficiency in both engines, while retaining the fast update 
property of the architecture. 
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