

A Hybrid IP Lookup Architecture with Fast Updates

Layong Luo1,2, Gaogang Xie1,*, Yingke Xie1, Laurent Mathy3, Kavé Salamatian4

1Institute of Computing Technology, Chinese Academy of Sciences, China
2Graduate University of Chinese Academy of Sciences, China

3Lancaster University, United Kingdom. University of Liège, Belgium
4University of Savoie, France

{luolayong, xie, ykxie}@ict.ac.cn, laurent@comp.lancs.ac.uk, kave.salamatian@univ-savoie.fr
*Corresponding Author: xie@ict.ac.cn

Abstract—As network link rates are being pushed beyond 40
Gbps, IP lookup in high-speed routers is moving to hardware.
The TCAM (Ternary Content Addressable Memory)-based IP
lookup engine and the SRAM (Static Random Access Memory)-
based IP lookup pipeline are the two most common ways to
achieve high throughput. However, route updates in both engines
degrade lookup performance and may lead to packet drops.
Moreover, there is a growing interest in virtual IP routers where
more frequent updates happen. Finding solutions that achieve
both fast lookup and low update overhead becomes critical. In
this paper, we propose a hybrid IP lookup architecture to address
this challenge. The architecture is based on an efficient trie
partitioning scheme that divides the Forwarding Information
Base (FIB) into two prefix sets: a large disjoint leaf prefix set
mapped into an external TCAM-based lookup engine and a small
overlapping prefix set mapped into an on-chip SRAM-based
lookup pipeline. Critical optimizations are developed on both IP
lookup engines to reduce the update overhead. We show how to
extend the proposed hybrid architecture to support virtual
routers. Our implementation shows a throughput of 250 million
lookups per second (MLPS). The update overhead is significantly
lower than that of previous work and the utilization ratio of most
external TCAMs is up to 100%.

I. INTRODUCTION

IP lookup is a critical function of Internet routers. Since the
introduction of CIDR (Classless Inter-Domain Routing) in
1993, finding the next hop for a destination IP address has
become a longest prefix matching (LPM) problem. Indeed,
given a destination address, multiple IP address prefixes of
different lengths may exist, in the Forwarding Information
Base (FIB) of the router, that match (i.e. contain) the given
address and the longest such prefix must be used to determine
the next hop for the corresponding packet to ensure correct
forwarding operation.

The longest prefix matching problem lends itself to a
hierarchical data structure for which a trie is an efficient
representation (see Fig. 1(a)). In the context of IP lookup, a trie
contains two types of nodes: 1) nodes (which we call prefix
nodes and are shown as dark nodes in Fig. 1(a)) that represent
predefined prefixes for which valid next hop information exists;
and 2) nodes (which we call non-prefix nodes and are drawn
clear) that do not contain next hop information. The longest
prefix matching a destination address is then determined by
following a single path from the trie root, with the longest-
prefix match corresponding to the last prefix node encountered

before the end of the path. Note that any encountered leaf node
will contain a longest-prefix match. Moreover, the address
space represented by the prefix stored at a node is always
contained within the address space represented by the prefix
stored at its ancestor nodes. Nonetheless, as there is only one
leaf node per trie-path, prefixes stored at different leaf nodes
are disjoint, i.e., the corresponding address spaces of two
leaves have no address in common.

As network link rates are being pushed beyond 40 Gbps, IP
lookup with LPM becomes a major bottleneck in high-speed
routers. The high lookup performance required by such high
link rates is hard to be achieved in software [1] and two major
hardware implementation techniques have been used to achieve
such high performance: TCAM (Ternary Content Addressable
Memory)-based lookup engines and SRAM (Static Random
Access Memory)-based lookup pipelines.

A TCAM implements a high-speed associative memory,
where in a single clock cycle a search key is compared
simultaneously with all the entries (i.e., keys) stored in the
TCAM to determine a match and output the address of it. As
TCAM entries can be specified using three states (0, 1, and ‘X’
meaning don’t care), this type of memory is particularly well
suited for storing IP prefixes where masked bits are given ‘X’
states. Indeed, because of the ‘X’ bits, several TCAM entries
could match a given IP address, so TCAMs are designed to
always return the first matching entry encountered (TCAM
entries have an intrinsic order represented by an address).
Therefore, in order to provide correct LPM operations, prefixes
are stored in the TCAM with reverse order in overlap, i.e.,
longest prefix should be stored first. These order constraints
result in a large number of TCAM entry movements on some
route updates, with large impact on the lookup performance
and possible packet drops[2].

Because of the interest of the TCAM and the importance of
the problems solved by it, several research efforts have led to
new algorithms to solve the issue of TCAM updates. In [3],
two approaches named PLO_OPT and CAO_OPT have been
proposed. PLO_OPT maintains the prefix-length order by
putting all the prefixes in order of decreasing prefix lengths and
keeping the unused space in the center of a TCAM. CAO_OPT
relaxes the constraint to only overlapping prefixes in the same
chain (a single path from the trie root). Both of the algorithms
can decrease the number of entry movements per update.
However, multiple entry movements are still needed for one

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2435

route update in the worst case[3]. In another approach, order
constraints can be completely avoided in a TCAM, by
converting the whole prefix set into an equivalent minimum
independent prefix set (MIPS) [4] using the leaf pushing
technique [5]. However, leaf pushing may lead to prefix
duplication. When a prefix is updated, all of its duplicates
should also be modified. Therefore, multiple write accesses
may still be needed during a single route update. Additionally,
TCAM updates can be performed without packet drops by
duplicating the TCAM, with updates done to the shadow
TCAM and the active one swapped out. However, the TCAM
memory requirements are double.

The other major hardware implementation technique is the
SRAM-based lookup pipeline[6], which corresponds to a
straightforward mapping of each trie level onto a corresponding
pipeline stage with its own SRAM memory, in order to achieve
a throughput of one lookup per clock cycle through the pipeline.
In such solutions, the number of pipeline stages depends on the
stride used (i.e., the number of bits used to determine which
branch to take at each stage -- in Fig. 1 and in the rest of this
paper we use 1-bit strides). Therefore, the lookup pipeline will
require a rather high number of separate SRAMs (up to 32 in
the case of IPv4). The Field Programmable Gate Array (FPGA)
is a natural hardware choice for implementation of the SRAM-
based pipeline, as it contains hundreds of separate SRAMs.
Nevertheless, the on-chip SRAM is generally a scarce resource
which should be allocated and utilized efficiently, or otherwise
be complemented by external SRAMs[7]. One major issue here
is that assigning the right size of the SRAM to each stage of the
pipeline and utilizing each SRAM efficiently is complicated by
the fact that it intimately depends on the shape of the trie.
While much work has been devoted to this issue[8-10], the fact
remains that on-chip SRAM is still unable to accommodate the
typically large inter-domain FIB (as shown in TABLE I, about
360K prefixes to date). For example, in [10] it is reported that
OLP(Optimized Linear Pipeline) can support 30K IPv4
prefixes using 3.456 Mb of on-chip SRAMs. Hence, given a
state-of-the-art large Virtex-6 FPGA (e.g., XC6VHX565T)
with 32 Mb of on-chip SRAMs, only about 277K IPv4 prefixes
can be stored using OLP. This means that the memory size is
still a challenge in the SRAM-based lookup pipeline.

Route updates are handled in the SRAM-based lookup
pipeline by using a technique known as write bubbles[11],
which essentially encode and encapsulate the updates into write
bubbles to be performed at each stage of the pipeline.
Nevertheless, only a single port of the SRAM modules is used

for read and write in building lookup pipelines in the past[11-
12]. This means that write bubbles may lead to disruption to the
IP lookup process. Much work[11-12] has targeted the
reduction of the number of write bubbles resulted from route
updates. Fortunately, state-of-the-art FPGAs now integrate dual
port SRAMs, capable of concurrent reading and writing (with
the possibility to do a write immediately after a read has been
completed without any collision). This can be exploited to
solve the problem of disruption caused by updates.

In a virtual router context, several router instances, and thus
multiple FIBs, must be accommodated. This clearly
exacerbates the memory requirement issues of hardware lookup
solutions[13]. Recent researches [14-15] have concentrated on
techniques to merge different virtual routers FIBs into a single,
“compressed” trie structure, with a view to reduce the total
memory requirement of the lookup engine. Nevertheless, route
updates in the current Internet are known to occur frequently,
with peak update rates affecting thousands of prefixes per
second [16]. In the presence of virtual routers, a same network
event could trigger simultaneous updates to multiple FIBs, thus
increasing the rate of updates to the hardware lookup engine.
Unfortunately, merging several FIBs together usually results in
complex data structures whose update mechanisms become
very challenging.

In this paper, we propose a different view to the problem of
hardware IP lookup engine design. Rather than using only one
type of hardware solution: TCAM or SRAM-based, we mix
these two in order to benefit from the positive points of each
architecture without being hindered by their weaknesses. Our
aim is to design a very fast lookup architecture that enables fast
updates concomitantly. The core idea of our solution is to
exploit an empirically observed structure in 1-bit tries built
from real FIBs (see TABLE I for more details). This observed
structure is as follows:

1) About 90% of all prefixes are stored in trie leaves[17],
and are thus disjoint from each other.

2) When the leaf nodes are removed from the original trie,
non-prefix internal nodes that only lead to those leaf nodes can
also be removed, and we are left with a much smaller trimmed
trie, which contains, on average, only about 12% of the nodes
of the original trie.

The large disjoint prefix set, resulting from property 1
above, makes a TCAM the ideal component to look these up,
as naturally disjoint prefixes do not impose any order
constraints within the TCAM, making updates trivial (no entry
movements are required and a single write access is sufficient
for each update since no prefix duplication is introduced). The
small trimmed trie resulting from the removal of the leaf
prefixes from the original trie, which represents the set of
prefixes that overlap with the above mentioned disjoint prefix
set, need much less memory space and can be stored in an on-
chip SRAM-based lookup pipeline in FPGA. We will refer to
this small trimmed trie as “the overlapping trie”. In fact,
several such trimmed tries can easily be accommodated in
SRAMs of an existing FPGA. Updating this SRAM-based
pipeline is also trivial, by exploiting the dual port capabilities
of SRAMs mentioned earlier.

Figure 1. (a) A sample trie, (b) the corresponding disjoint prefix set, and
(c) the corresponding overlapping prefix set (a small trie).

2436

In this paper, we mainly target fast FIB updates in high-
speed routers. For this purpose, we propose a hybrid lookup
architecture, composed of a TCAM-based lookup engine and
an SRAM-based pipeline operating in parallel. The TCAM
contains the disjoint prefixes and the SRAM-based pipeline
contains the overlapping tries. We show that this hybrid
approach results in fast lookup combined with easy and fast
updates. We also show how our approach can be applied in the
context of virtual routers, by simply prefixing IP addresses with
a virtual router ID (VID), and performing the lookup on those
“extended addresses”.

We implement the proposed hybrid architecture on our
PEARL hardware platform[18], and achieve a maximum
throughput of 250 Million Lookups Per Second (MLPS).
Comparative results show that the update overhead is
significantly lower than that of previous work. Moreover, our
TCAM memory can easily be dimensioned to achieve memory
space utilization close to 100%.

The rest of the paper is organized as follows. In section II,
we introduce our hybrid architecture and describe the
optimizations for fast updates. In section III, we extend our
approaches to support virtual routers. In section IV, we
describe the architecture implementation on our PEARL
platform and compare its performance with other techniques.
We discuss some extensions in section V and conclude the
paper in section VI.

II. ARCHITECTURE

In this section, we will describe our hybrid IP lookup
architecture with fast updates in the context of a single router.
We use 1-bit tries to illustrate the concepts. First, a 1-bit trie
will be built from the FIB of the router, and a trie partitioning
scheme will be applied to partition the trie into a large disjoint
leaf prefix set and a small trimmed overlapping trie (we will
use the terms an overlapping trie and an overlapping prefix set
interchangeably through the paper). The large disjoint leaf
prefix set is mapped into an external TCAM-based IP lookup
engine, while the small trimmed overlapping trie is mapped
into an on-chip SRAM-based IP lookup pipeline in FPGA.

A. Trie Partitioning Scheme

Based on the observation described in the Introduction, an
efficient trie partitioning scheme similar to the set-bounded
leaf-pushing algorithm in [17] is applied to partition the 1-bit
trie into two prefix sets. All the leaf prefixes in the trie are
collected to form a large disjoint prefix set, and all the leaf
nodes are removed from the trie. Then, we can further trim the
remaining trie by removing non-prefix leaf nodes recursively
until all the leaf nodes in the final trimmed trie are prefix nodes.
Note that leaf pushing is not used in the trimmed trie in order to
enable fast updates, which is the key difference between our
trie partitioning scheme and that applied in [17].

Fig. 1 illustrates the trie partitioning scheme. A 1-bit trie
built from a sample FIB is shown in Fig. 1(a). In the trie,
prefix P2, P4, P5, and P6 are leaf prefixes. All these leaf
prefixes are moved to a disjoint prefix set (see Fig. 1(b)), and
the leaf nodes 4, 7, 8, and 9 are deleted from the trie. Then the
remaining trie can be further trimmed. For example, node 5
becomes a leaf node but it doesn’t contain any prefix so it can
be removed. The final trimmed trie is shown in Fig. 1(c) and
represents the small overlapping prefix set (a small overlapping
trie).

B. Overall Architecture

The hybrid IP lookup architecture is depicted in Fig. 2. It’s
composed of two IP lookup engines operating in parallel. The
large disjoint leaf prefix set (e.g., see Fig. 1(b)) is stored in the
TCAM-based lookup engine, while the small overlapping trie
(e.g., see Fig. 1(c)) is mapped into the on-chip SRAM-based
pipeline. The destination IP address of an incoming packet is
extracted in the header parser module and sent to the two
lookup engines to search in parallel. Meanwhile, the packet is
stored in a buffer waiting for the next hop information. Since
the length of the prefix matched in the disjoint prefix set is by
design longer than that in the overlapping prefix set, the search
result of the TCAM-based lookup engine has a higher priority
than that of the SRAM-based lookup pipeline. Note, however,
that a match does not necessarily exist in either lookup engine.
After lookups in both lookup engines are completed, the
priority arbiter module resolves the priority and determines the
final next hop information. Thereafter the packet is read from
the buffer and modifications are conducted based on the next
hop information. Finally, the packet becomes ready to be
scheduled to the corresponding output interface.

C. Optimizations for Fast Updates

Efforts are made in both lookup engines to optimize the
update process.To achieve fast updates, only the large disjoint

TABLE I. ANALYSIS OF REAL ROUTING TABLES
FIB # prefixes # nodes of

the trie
leaf prefixes # nodes of the

trimmed trie
rrc00 368057 905941 332409 (90.31%) 110109 (12.15%)
rrc01 358925 880946 325667 (90.73%) 103326 (11.73%)
rrc03 355603 873608 322419 (90.67%) 102984 (11.80%)
rrc04 366656 903163 332962 (90.81%) 104169 (11.53%)
rrc05 358355 879902 324594 (90.58%) 104457 (11.87%)
rrc06 351919 863114 319654 (90.83%) 100819 (11.68%)
rrc07 361881 888468 327781 (90.58%) 106517 (11.99%)
rrc10 355106 871466 321995 (90.68%) 102833 (11.80%)
rrc11 361708 888394 327742 (90.61%) 105552 (11.88%)
rrc12 363761 895781 329377 (90.55%) 106584 (11.90%)
rrc13 363057 894876 328942 (90.60%) 106024 (11.85%)
rrc14 361232 885979 327160 (90.57%) 105475 (11.90%)
rrc15 359326 880902 325154 (90.49%) 104536 (11.87%)
rrc16 366711 903062 331674 (90.45%) 108509 (12.02%)

Figure 2. The hybrid IP lookup architecture

2437

prefix set is stored in the TCAM-based IP lookup engine. In
such a disjoint prefix set, a given IP address can only be
matched by at most one prefix. This means that the prefixes can
be stored in the TCAM without any order constraints.
Therefore, the prefixes can be directly inserted in and deleted
from the TCAM, and route updates do not need any entry
movement. Moreover, the leaf prefix set is naturally disjoint
and no prefix is duplicated. Hence, a single write access is
enough for any route update in the worst case.

As explained in the Introduction, in the first generation of
SRAM-based pipelines[11-12], write bubbles may lead to
disruption to the IP lookup process since a write operation and
a read operation could not be performed simultaneously on the
same port of an SRAM. In this paper, we use new generation of
FPGAs, like Xilinx FPGAs, that have dual port on-chip
SRAMs[19]. These SRAMs can be configured into a simple
dual port (SDP) mode where the SRAM has separate read and
write ports. In this mode read and write can be performed
simultaneously without any collision. Using this mode we
design a pipeline with separate lookup and update paths in
order to totally eliminate the disruption (see Fig. 3(a)). In this
pipeline lookups are performed by only accessing the read port
of the SRAM in each stage, while write bubbles are performed
by only accessing the write port. In this way, IP lookups and
write bubbles can be performed simultaneously in separate
paths without collision.

Before a write bubble is injected into the pipeline, the data
to be written to each stage of the pipeline are previously stored
into a write bubble FIFO relative to each stage (see Fig. 3(b)).
When the write bubble enters into the pipeline, it visits each
stage for one clock cycle, and goes to the next stage. When a
write bubble visits a stage, the data stored in the associated
write bubble FIFO are written into the corresponding address
when the valid flag is true. Through this scheme, the write
bubble doesn’t need to wait for the data and it can update each
stage in just one clock cycle (that means it can go through the
pipeline at the same speed as the lookup).

As a write bubble and an IP lookup can run at the same
speed, and one write bubble is sufficient for a worst-case route
update when using the 1-bit trie-based data structure for
pipelining[12], an IP lookup never traverses the trie in an

inconsistent state. More precisely, even when a lookup and a
write bubble access the same node of the same stage
simultaneously, the lookup still reads the old node before
modification (thanks to the READ_FIRST feature of the SDP
SRAM in Xilinx FPGA[19]), and this read-write order is kept
when they both move to the next stage. Therefore, an IP lookup
always accesses the trie in a consistent state during updating.

In summary, in our proposed architecture a single write
access is sufficient for a worst-case route update in the TCAM-
based lookup engine, and route updates have zero impact on
the lookup process in the SRAM-based lookup pipeline.

D. Fast Incremental Updating Algorithms

We need to describe how an incremental route update is
translated into updates in the TCAM-based lookup engine and
the SRAM-based lookup pipeline. A route update can be
classified into three main categories [17]: (1) insertion of a new
prefix, (2) deletion of an existing prefix, and (3) modification
of an existing prefix. The third type of the route update can
easily be performed since it doesn’t change the shape of the trie.
However, the first two types are more complex. Insertion of a
new prefix or deletion of an existing prefix may lead to prefix
changes in both the disjoint prefix set and the overlapping trie.

To deal with this, we maintain an auxiliary 1-bit trie built
from the FIB in the control plane of the router. The auxiliary 1-
bit trie keeps track of prefixes stored in our hybrid architecture.
An update operation consists of two phases. In the first phase,
the route update is performed on the auxiliary trie and changes
in the disjoint prefix set and the overlapping trie are found. In
the second phase, optimized write accesses are applied to the
hybrid architecture. In order to illustrate the incremental update
process in our hybrid architecture, two complex update
scenarios are shown in Fig. 4 and Fig. 5, respectively.

Fig. 4 illustrates the insertion of a new leaf prefix P7 (000*).
After the insertion, prefix P2 turns into a non-leaf prefix and a
new leaf prefix P7 appears. This results in three changes in the
corresponding disjoint prefix set and the overlapping trie: (1)
prefix P2 should be inserted into the overlapping trie, (2) prefix
P2 should be deleted from the disjoint prefix set, and (3) prefix
P7 should be inserted into the disjoint prefix set. After these
changes are found in the control plane, P2 will be inserted into
the SRAM-based pipeline, and then P7 will be inserted into the
TCAM at the location where P2 was previously stored. The
TCAM location where the leaf prefix is stored is recorded in
the node data structure of the auxiliary 1-bit trie.

Fig. 5 illustrates the deletion of an existing leaf prefix P2
(00*). After the deletion, prefix P1 turns into a new leaf prefix.

Figure 4. (a) Insertion of a new prefix, (b) its corresponding disjoint
prefix set, and (c) its corresponding overlapping trie

(a) The n-stage IP lookup pipeline

write bubble
wr_en

Simple
Dual Port RAM

addr &din

lookup
rd_addr dout

vld address content

Write Bubble
FIFO

(b) A single stage of the pipeline

Figure 3. The SRAM-based IP lookup pipeline

2438

It leads to three changes in the corresponding disjoint prefix set
and the overlapping trie: (1) prefix P2 should be deleted from
the disjoint prefix set, (2) prefix P1 should be inserted into the
disjoint prefix set, and (3) prefix P1 should be deleted from the
overlapping trie. After detecting these changes in the control
plane, P1 will be inserted into the TCAM at the location where
P2 was previously stored, and thereafter P1 will be deleted
from the SRAM-based pipeline.

Due to space limitation in this paper, we only illustrate two
complex update scenarios but all scenarios are as easy to
update. The complete insertion and deletion algorithms are
presented in Fig. 6 and Fig. 7, respectively. Both of these
algorithms are performed in software with a time complexity
O(l), where l is the length of prefix P to be updated. In both
algorithms, one route update generates at most one write
operation to each lookup engine, and the order between the two
write operations (if they exist) should be kept to avoid incorrect
longest prefix matching during updating. For example, deleting
prefix Q and inserting prefix P in the TCAM (see line 10 in Fig.
6) can be combined into one write operation by just overwriting
prefix Q with P. Additionally, the execution of line 9 and 10
should be kept in the order shown in Fig. 6. Otherwise, prefix
Q will disappear in both lookup engines temporarily, which
may lead to incorrect longest prefix matching during updating.

III. LOOKUP FOR VIRTUAL ROUTERS

We described in previous section the hybrid IP lookup
architecture for a single router. Nonetheless, the lookup
architecture can naturally be extended to support virtual routers.

A virtual router platform contains multiple FIBs; each FIB
has the same feature as the FIB of a traditional non-virtual
router. Therefore, the trie partitioning scheme is still suitable
for each individual FIB in the virtual router platform. When
each FIB is partitioned separately, multiple large disjoint prefix
sets and relatively small overlapping tries are generated. We
can further merge these disjoint prefix sets into a single one,
and merge the overlapping tries into a single trie.

Several approaches have been proposed for merging prefix
sets for virtual routers, e.g., common prefix set[14] and virtual
prefix technique [17]. For our purpose we have chosen the
virtual prefix technique since it is simple and has a fast
execution time[17]. In this scheme, by appending a unique
virtual router ID (VID) before the prefix we get a virtual prefix.
This ensures that the virtual prefix sets of all virtual routers are
not overlapping. Hence, we can directly merge the virtual
prefix sets of all virtual routers together to form a large prefix
set. As an example, let’s assign a VID 0 to the FIB shown in
Fig. 1(a) and a VID 1 to the FIB shown in Fig. 8(a). Their
corresponding prefix sets can be merged into two new prefix
sets (see Fig. 9(a) and Fig. 9(b)).

Using the VID, all FIBs of virtual routers can be merged
into a large disjoint prefix set and a relatively small
overlapping trie (e.g., see Fig. 9(a) and 9(b)). These two sets
have the same feature as that in a single router. Therefore, the
merged disjoint prefix set can be mapped into the external
TCAM-based IP lookup engine, and the merged overlapping
trie can be mapped into the on-chip SRAM-based IP lookup

Figure 5. (a) Deletion of an existing prefix, (b) its corresponding disjoint

prefix set, and (c) its corresponding overlapping trie

Input: Trie T, and Prefix P which is to be inserted to T.
Output: Changes in the disjoint prefix set S1 and the
overlapping prefix set S2.
1 Insert prefix P into trie T, the new trie is T’
2 Find the longest prefix of P in T’ : Prefix Q
3 if P is a non-leaf prefix in T’
4 Add P into S2;
5 else if P is a leaf prefix in T’
6 if Q is a non-leaf prefix in T
7 Add P into S1;
8 else if Q is a leaf prefix in T
9 Add Q into S2;
10 Del Q from S1, and add P into S1;
11 end if
12 end if

Figure 6. Algorithm: Insertion of a prefix

Input: Trie T, and Prefix P which is to be deleted from T.
Output: Changes in the disjoint prefix set S1 and the
overlapping prefix set S2.
1 Delete prefix P from trie T, the new trimmed trie is T’
2 Find the longest prefix of P in T: Prefix Q
3 if P is a non-leaf prefix in T
4 Del P from S2;
5 else if P is a leaf prefix in T
6 if Q is a non-leaf prefix in T’
7 Del P from S1;
8 else if Q is a leaf prefix in T’
9 Del P from S1, and add Q into S1;
10 Del Q from S2;
11 end if
12 end if

Figure 7. Algorithm: Deletion of a prefix

Figure 8. (a) Another sample trie, (b) the corresponding disjoint prefix
set, and (c) the corresponding overlapping prefix set.

2439

pipeline. This makes the architecture depicted in Fig. 2 suitable
for virtual routers with a slight modification. The IP address
used to search both lookup engines should be changed to a
virtual IP address (VIP) by appending a VID to an IP address.
This is performed in the header parser module shown in Fig. 2.

From this point, the update process in virtual routers
becomes similar to that in a single router. When a route update
is to be performed on one FIB of virtual routers, the same fast
incremental updating algorithm described before is applied on
the corresponding 1-bit trie to detect the changes in its disjoint
prefix set and overlapping trie, with the difference that now the
new prefix to be updated must be constructed by concatenating
the prefix with the VID. Taking the insertion in Fig. 4 as an
example, and assuming that they are relative to a virtual router
instance with a VID 0, the changes in the final merged sets are
as follows: (1) virtual prefix P02 (000*) should be inserted into
the overlapping trie, (2) virtual prefix P02 (000*) should be
deleted from the disjoint prefix set, and (3) virtual prefix P07
(0000*) should be inserted into the disjoint prefix set.

As mentioned before, one route update causes at most one
write operation on each lookup engine for a single router. This
remains valid for virtual routers; any route update in an FIB of
virtual routers need at most one write operation on each lookup
engine.

IV. PERFORMANCE EVALUATION

A. Analysis of Real Routing Tables

Fourteen real IPv4 routing tables have been collected from
RIPE RIS Project[20] on 05/20/2011. Analysis is performed on
these real routing tables to validate the advantage of the trie
partitioning scheme. The analysis results are shown in TABLE
I.

The number of prefixes and leaf prefixes in each FIB are
shown respectively in column # prefixes and # leaf prefixes.
We can see that for all the fourteen FIBs, more than 90% of the
prefixes are leaf prefixes. This is expected since most of the
prefixes are around 24-bit long, and most of them are disjoint
leaf prefixes. The number of nodes in the original trie is
represented in column # nodes of the trie. We applied the
partitioning scheme. After moving the leaf prefixes into a
disjoint leaf prefix set and trimming the trie further, the number
of nodes remaining in the final trimmed trie is shown in
column # nodes of the trimmed trie. The results show that after
trimming, the number of remaining nodes is about 12% of that

of the original trie. These observations confirm the initial
empirical finding which is the base of the trie partitioning.

 Based on the above analysis, the following conclusions can
be drawn.

1) Using the partitioning scheme, most of the prefixes are
moved to external TCAMs. Meanwhile, all of them are
naturally disjoint and they can be stored without any order
constraints. This feature can be used to guarantee fast updates
in a TCAM.

2) After removing the leaf nodes, the amount of memory
needed in the SRAM-based pipeline is reduced significantly.
Hence, the memory size issue of on-chip SRAM-based
pipelines in FPGA can be well addressed.

The above conclusions still hold for virtual routers as each
router will have an FIB that will validate the above properties.

B. Throughput

We have implemented the hybrid architecture on our
PEARL [18] hardware platform, which is equipped with a
Xilinx Virtex-5 XC5VLX110T-1 FPGA and an IDT
IDT75K72100 TCAM. The post place and route result in the
FPGA shows a maximum clock frequency of 297 MHz (i.e.,
297 MLPS in the SRAM-based lookup pipeline). Besides, the
TCAM has a theoretical maximum throughput of 250 MLPS.
Hence, the implementation enables a maximum throughput of
250 MLPS, which exceeds largely the throughput requirement
of 100G Ethernet. However, the PEARL platform we used has
only four Gigabit Ethernet interfaces that need a maximum
lookup rate of about 5.95 MLPS. We show in Fig. 10, the
measured and theoretical throughput obtained over the PEARL
platform with the proposed hybrid IP lookup architecture.

It is noteworthy, that it’s hard to make a fair comparison
with throughput measured in previous work, since the device
types and optimization parameters of implementation tools are
very different. However, the throughput of our implementation
is clearly adequate for practical virtual routers.

C. Update Overhead

The number of TCAM write accesses per update is used as
the metric to estimate the update overhead of TCAM-based
engines. For the SRAM-based pipeline we use the number of
disrupted lookup cycles per write bubble as the metric of
comparison. We have chosen PLO_OPT/CAO_OPT[3],
MIPS[4] and write bubbles in [11-12] as the comparison basis.

Figure 9. (a) The merged disjoint prefix set, and (b) the merged
overlapping prefix set.

Figure 10. The throughput of the hybrid architecture

2440

Theoretical comparison. In the best case, only one TCAM
write access is required for each route update in both
PLO_OPT and CAO_OPT[3], and zero TCAM write access is
required for each update in both MIPS[4] and our architecture.
However, the results in the worst case are quite different. In
PLO_OPT[3], the prefix-length order should be kept and the
empty space is arranged in the center of a TCAM. Therefore, a
route update requires at most W/2 write accesses to the TCAM,
where W is the maximum length of the prefixes (32 for IPv4).
In CAO_OPT[3], the chain-ancestor order should be kept and
the empty space is still arranged in the center. Therefore, a
route update requires at most D/2 write accesses to the TCAM,
where D is the maximum length of the chain. Theoretically, D
may be up to W. MIPS[4] utilizes leaf pushing to convert the
prefix set into an independent (disjoint) prefix set. However,
leaf pushing may duplicate a prefix many times. In the
theoretical worst case, a prefix could be duplicated to 2W-1
prefixes. Therefore, the maximum number of TCAM accesses
for one route update is 2W-1. In our hybrid architecture, the
prefix set stored in the TCAM is naturally disjoint and prefix
duplication is not required. One route update leads to at most
one write access to the TCAM in any case. The theoretical
comparison between different schemes is summarized in
TABLE II.

Empirical comparison. We get from the RIPE RIS project
[20] one of the publicly available routing tables rrc00 (see
TABLE I) and one-hour update traces on it. The update traces
contain 165,721 updates. Fig. 11 shows the running average of
the number of TCAM accesses per update required for all the
four compared TCAM update schemes as a function of the
number of updates. The average in our proposed hybrid
architecture remains persistently under one TCAM access
(about 0.91) per update. This is expected since only one TCAM
access is required for a leaf prefix update and zero TCAM
access for a non-leaf prefix update. It can be seen that the
average number of TCAM accesses in the hybrid scheme is
much lower than that of all other three competing solutions.
More importantly, the maximum number of TCAM accesses
per update that directly affects the size of the packet buffer
required in a lookup engine to avoid packet drops during
updating, is precisely equal to one and significantly lower than
that of competitor schemes (see TABLE III).

Obviously, the number of TCAM accesses per update in
our proposed architecture can be proved to be optimal as at

most a single write access per update to the TCAM is
mandatory. This means that we can guarantee a minimum
worst-case update overhead in the TCAM-based lookup engine.
The summary of comparison results on routing table rrc00 is
shown in TABLE III. Last but not least, even if MIPS is able to
achieve a performance relative to an average number of write
accesses per update that is close to 1, the worst-case overhead
for a single update is very high (see TABLE II and TABLE III).

In [11-12], write bubbles are used for route updates in
SRAM-based pipelines. Each write bubble may disrupt the IP
lookup process for one cycle in the worst case and minimizing
the number of write bubbles reduces the update overhead. In
our approach, we have addressed this challenge by devising a
pipeline with separate lookup and update paths in order to
totally eliminate the disruption to IP lookup process caused by
write bubbles.

In summary, each route update leads to at most one write
access in the TCAM-based IP lookup engine and has zero
impact on the SRAM-based pipeline. Therefore, The update
overhead is significantly lower than that of previous work[3-4,
11-12].

D. Memory Utilization

As explained before if the entire routing table was going to
be managed by an SRAM-based pipeline, external memories
would have been mandatory to support large routing tables in
practice. However, due to the limited number of available I/O
pins in FPGA, only a few external memories can be equipped.
Hence, the utilization ratio of external memories becomes very
important.

When external SRAMs are used for trie-based pipelines, a
few large levels are moved into external SRAMs[7]. However,
the size of those levels is variable and controlling the memory
distribution among these stages is hard to achieve[7]. Therefore,
the external SRAMs should be over-provisioned and memory
waste can rarely be avoided. In the 2-3 tree-based routers[17],
the last few stages of the SRAM-based pipeline are moved to
external SRAMs. In these routers, a balanced tree named 2-3
tree is built so that the size of needed memory in level i+1 is
about twice of that in level i. However, it is impractical to find

TABLE II. THEORETICAL COMPARISON OF THE NUMBER OF TCAM

WRITE ACCESSES PER UPDATE
TCAM-based Engines Maximum Minimum

PLO_OPT W/2 (16) 1
CAO_OPT D/2 (16) 1

MIPS 2W-1 (231) 0
Our Architecture 1 0

TABLE III. EMPIRICAL COMPARISION OF THE NUMBER OF TCAM WRITE

ACCESSES PER UPDATE ON RCC00 ROUTING TABLE
TCAM-based Engines Maximum Average Minimum

PLO_OPT 16 6.42 1
CAO_OPT 4 1.55 1

MIPS 247 1.15 0
Our Architecture 1 0.91 0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
0

1

2

3

4

5

6

7

Number of updates(x100)

N
u

m
b

er
 o

f
T

C
A

M
 a

cc
es

se
s

PLO_OPT
CAO_OPT
MIPS
Our Architecture

Figure 11. The running average of the number of TCAM accesses per update
on rrc00 routing table.

2441

in the market external SRAMs with exact needed sizes. Due to
this fact, it is hard to avoid memory waste when using 2-3 tree-
based routers and the memory utilization ratio is usually low.

In our proposed architecture, the disjoint prefix set can be
stored in external TCAMs without any order constraints. As a
result, a disjoint prefix set can be mapped into a TCAM until it
becomes full. Multiple external TCAMs can be cascaded to
store more prefixes and each of those TCAMs can achieve a
memory utilization ratio of 100% except the last TCAM. We
should reserve enough empty space in the last one for further
updating. Therefore, memory waste can be avoided.
Additionally, the memory utilization among on-chip SRAMs in
FPGA can be well balanced using the scheme proposed in [10].

V. DISCUSSIONS

A. Dual Pipelines

The SRAMs in Xilinx FPGA[19] are dual port. A read or
write operation can be performed on each port alternatively. In
this paper, one port of the SRAM is dedicated to read
operations (lookups) and the other port is dedicated to write
operations (updates). In such a pipeline with separate lookup
and update paths, IP lookups and route updates can run
simultaneously without any collision. Therefore, route updates
have zero impact on lookups. However, by using each port of
the SRAM both for lookups and updates, an alternative
architecture of true dual pipelines can be built[17]. In such dual
pipelines even though a route update may disrupt the lookup
process in the same pipeline, it has no impact on the lookup
process in the other pipeline. Therefore, the final forwarding
performance of dual pipelines is much higher than that of a
pipeline with separate lookup and update paths. However, we
still choose the pipeline with separate lookup and update paths
in our hybrid architecture for the following two reasons.

First, the forwarding performance of the pipeline with
separate lookup and update paths is sufficient in our hybrid
architecture. Generally, the clock frequency of an SRAM is
higher than that of a TCAM. Given a typical SRAM with a
clock frequency of 400 MHz and a typical TCAM with a clock
frequency of 200 MHz, an SRAM-based pipeline can achieve a
maximum throughput of 400 MLPS and a TCAM-based engine
can achieve up to 200 MLPS. Obviously, in a hybrid
architecture composed of a TCAM-based lookup engine and an
SRAM-based pipeline operating in parallel, the final lookup
performance is determined by the TCAM-based engine and it’s
not necessary to use dual SRAM-based pipelines.

Second, the implementation of dual pipelines is more
complicated than that of the pipeline with two separate paths.
In dual pipelines, each pipeline should be switched for lookups
or updates. However, in the pipeline with two separate paths,
the lookups and the updates run separately. Obviously, the
structure of the two-path pipeline is simpler.

B. Memory Footprint

Although external TCAMs can be fully utilized and only
90% of the prefixes of the FIBs are stored in TCAMs,
achieving a smaller memory footprint in a TCAM is desirable.
For example, an existing large TCAM can accommodate up to

1024K 40-bit entries[21]. However, there are about 300K leaf
prefixes in a single FIB (see TABLE I), which means that only
leaf prefixes of about three virtual router FIBs can be
accommodated in this TCAM. Therefore, the leaf prefixes
stored in the TCAM should be compacted to support more
FIBs in the context of virtual routers.

The compactions can be performed in two ways. First, leaf
prefixes within a single FIB can be compacted. For example, if
two leaf prefixes have the same parent node in a trie, and they
have the same next hop, they can be replaced by their parent
prefix. Second, leaf prefixes of different FIBs can be
compacted. For example, if a prefix 110* with a VID 0 and a
prefix 110* with a VID 1 coexist in the TCAM, and they have
the same next hop, they can be merged to a single entry *110*.
Indeed this issue exists for all TCAM management techniques.

On the other hand, memory balancing[8-10] and compact
data structure like trie merging[14-15] can also be applied to
the memory of on-chip SRAMs in FPGA to achieve a small
memory footprint.

However, it’s noteworthy that there is a trade-off between
memory footprint and update overhead, since in the extreme, a
very compact data structure may drastically increases the
update overhead. This trade-off should be considered during
compacting in practice.

As mentioned before, external SRAMs can also be used to
extend the total memory size of on-chip SRAM-based pipelines.
Each external SRAM should be over-provisioned and memory
waste couldn’t be avoided. However, an SRAM usually has a
higher density than a TCAM. We are planning to study how to
use external memories in an efficient way to support more FIBs
after compaction in the near future.

C. Multi-bit Trie

In this paper, we have used a 1-bit trie structure. However,
a multi-bit trie can be used to represent the final small
overlapping trie before mapping it into the on-chip SRAM-
based pipeline.

However, this brings new problems. When building a
multi-bit trie, prefix expansion is needed in order to transform a
prefix set into an equivalent one with allowed prefix lengths.
However, prefix expansion may lead to node duplication [22].
Therefore, a single route update may need more than one write
access on a single pipeline stage and multiple write bubbles
may be required for a complete route update. In order to avoid
incorrect longest prefix matching, no IP lookups are allowed to
be injected into the pipeline until all the write bubbles
belonging to a single route update are completed. Hence, route
updates may lead to disruption to the IP lookup process and
zero impact on the lookup process can no longer be guaranteed.
This explains why we don’t use the multi-bit trie to represent
the overlapping prefix set.

VI. CONCLUSIONS

In this paper, we mainly focus on the FIB update challenge
for high-speed routers. An efficient trie partitioning scheme is
applied to convert a 1-bit trie into a large disjoint leaf prefix set
and a small overlapping trie. This partitioning is motivated by

2442

the observation that more than 90% of prefixes in the 1-bit trie
are naturally disjoint leaf prefixes and can be easily mapped
into external TCAM-based lookup engine. Thus, entry
movements can be totally avoided and no prefix is duplicated,
which results in a single write access for each update of a leaf
prefix. Additionally, the memory management of TCAMs can
be significantly simplified since a prefix in a disjoint prefix set
can be stored in a TCAM at any available location. Therefore,
we do not need to reserve empty space in each TCAM at
special locations, and thus achieve a utilization ratio of TCAMs
close to 100%. In other words, we only need to reserve some
empty space in the last TCAM for further updating, and the
remaining TCAMs can be fully utilized.

After removing the leaf nodes, the remaining trie can be
further trimmed resulting in an overlapping trie that contains
only about 12% of the nodes of the original trie. The
overlapping trie is thereafter implemented in an SRAM-based
pipeline with significantly lower memory requirement. In the
context of virtual routers, multiple such overlapping tries can
be accommodated in the on-chip SRAMs of existing FPGAs.
Moreover, by exploiting the dual port SRAMs in Xilinx FPGA,
we design an SRAM-based pipeline with separate lookup and
update paths that enable simultaneous lookup and update
operations without any collision. Therefore, route updates have
zero impact on our dual-path SRAM-based pipeline.

The fast incremental updating algorithms guarantee that, in
any case, any route update in the original 1-bit trie leads to at
most one write access in our TCAM-based lookup engine, and
at most one write bubble in our SRAM-based lookup pipeline
(we can ignore the update overhead in our SRAM-based
lookup pipeline since updates have zero impact on lookups).
Therefore, we only need to lock the TCAMs for the time of at
most one write access during each update. This update
overhead is significantly lower than that of previous work.

In the context of virtual routers, a virtual router ID is
assigned to each FIB and a simple merging scheme is applied.
Then, the hybrid architecture can be well scaled to support
virtual routers. Meanwhile, the update overhead of each route
update stays the same as that in a single router.

The performance evaluation shows that the throughput is
sufficient for 100G Ethernet routers, the update overhead is
significantly lower than that of previous work, and the
utilization ratio of most external high-capacity memories can
be up to 100%. While the memory consumption of our
proposed scheme is reasonable, we will study, as future work,
compact data structures that can be applied to improve memory
efficiency in both engines, while retaining the fast update
property of the architecture.

ACKNOWLEDGMENT

This work was supported by National Basic Research
Program of China under grant No. 2012CB315801, the NSFC-
ANR pFlower project under grant No. 61061130562, NSFC
under grant No. 61133015 and No. 60903208, and the
Instrument Developing Project of the Chinese Academy of
Sciences under grant No. YZ200926.

REFERENCES

[1] W. Jiang, Q. Wang, and V. K. Prasanna, "Beyond TCAMs: An
SRAM-based parallel multi-pipeline architecture for terabit IP
lookup," in INFOCOM'08: Proceedings of the 27th Conference on
Computer Communications, pp. 2458-2466, 2008.

[2] Z. J. Wang, H. Che, M. Kumar, and S. K. Das, "CoPTUA:
Consistent policy table update algorithm for TCAM without
locking," Ieee Transactions on Computers, vol. 53, pp. 1602-1614,
Dec 2004.

[3] D. Shah and P. Gupta, "Fast updating algorithms for TCAMs,"
IEEE Micro, vol. 21, pp. 36-47, 2001.

[4] G. Wang and N. F. Tzeng, "TCAM-based forwarding engine with
minimum independent prefix set (MIPS) for fast updating," in
ICC'06: 2006 IEEE International Conference on Communications,
Vols 1-12, pp. 103-109, 2006.

[5] V. Srinivasan and G. Varghese, "Fast address lookups using
controlled prefix expansion," Acm Transactions on Computer
Systems, vol. 17, pp. 1-40, Feb 1999.

[6] S. Sikka and G. Varghese, "Memory-efficient state lookups with
fast updates," Computer Communication Review, vol. 30, pp. 335-
347, Oct 2000.

[7] W. Jiang and V. K. Prasanna, "Towards practical architectures for
SRAM-based pipelined lookup engines," in INFOCOM IEEE
Conference on Computer Communications Workshops, pp. 1-5,
2010.

[8] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, "A tree based
router search engine architecture with single port memories," in
ISCA'05: Proceedings of the 32nd International Symposium on
Computer Architecture, pp. 123-133, 2005.

[9] S. Kumar, M. Becchi, P. Crowley, and J. Turner, "CAMP: fast and
efficient IP lookup architecture," in ANCS'06: Proceedings of the
2006 ACM/IEEE symposium on Architecture for networking and
communications systems, San Jose, California, USA, pp. 51-60,
2006.

[10] W. Jiang and V. K. Prasanna, "A memory-balanced linear pipeline
architecture for trie-based IP lookup," 15th Annual IEEE
Symposium on High-Performance Interconnects, Proceedings, pp.
83-90, 2007.

[11] A. Basu and G. Narlikar, "Fast incremental updates for pipelined
forwarding engines," in IEEE INFOCOM 2003, pp. 64-74.

[12] J. Hasan and T. N. Vijaykumar, "Dynamic pipelining: Making IP-
lookup truly scalable," in Proc. ACM SIGCOMM 2005, pp. 205-216.

[13] K. Huang, G. Xie, Y. Li, and A. X. Liu, "Offset addressing
approach to memory-efficient IP address lookup," in IEEE
INFOCOM Mini-Conference, pp. 306-310, 2011.

[14] J. Fu and J. Rexford, "Efficient IP-address lookup with a shared
forwarding table for multiple virtual routers," in CoNEXT'08:
Proceedings of the 2008 ACM CoNEXT Conference, Madrid, Spain,
pp. 1-12, 2008.

[15] H. Y. Song, M. Kodialam, F. Hao, and T. V. Lakshman, "Building
scalable virtual routers with trie braiding," in INFOCOM'10:
Proceedings of the 29th Conference on Computer Communications,
pp. 1-9, 2010.

[16] The BGP Instability Report. Available:
http://bgpupdates.potaroo.net/instability/bgpupd.html

[17] H. Le, T. Ganegedara, and V. K. Prasanna, "Memory-efficient and
scalable virtual routers using FPGA," in FPGA'11: Proceedings of
the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, Monterey, CA, USA, pp. 257-266, 2011.

[18] G. Xie, et al. PEARL: A programmable virtual router platform.
IEEE Comm. Magazine, Special Issue on Future Internet
Architectures: Design and Deployment Perspectives, 2011.

[19] Xilinx FPGA. Available: http://www.xilinx.com/
[20] RIPE RIS Raw Data. Available: http://www.ripe.net/data-

tools/stats/ris/ris-raw-data.
[21] NetLogic, "NL9000 RA knowledge-based processors," 2009.
[22] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, "Survey and

taxonomy of IP address lookup algorithms," Ieee Network, vol. 15,
pp. 8-23, Mar-Apr 2001.

2443

